
M2MLIGHT USER GUIDE
Version 1.5

Date: Aug 20 2019

1. Introduction
2. Register User
3. IP cameras
4. Sensors
5. Actuators
6. Alerts
7. Subdomains
8. R EST services and M2MData arduino library
9. MQTT protocol
10. Related lin ks and Credits

1. INTRODUCTION

This platform is aimed at enthusiasts who have a basic knowledge of Internet of Thing (IoT) devices.
M2mlight.com is a free basic platform service for IoT devices. You can store your cameras, sensors,
actuators and alerts data in the cloud. Then, using your desktop or smartphone via the Internet, you can
see the videos, graphs, maps and statistics of these devices.

Cameras, sensors and actuators can receive and send data using a microcontroller like Arduino, Raspberry
Pi or Esp8266; and then, through a gateway or router can send this information to the m2mlight platform
in the cloud.

HTTP and RTSP protocols are used for cameras; and, sensors, actuators and alarms use the HTTP and
MQTT protocols

Examples of using this platform you can see in this link caletagreen.com.

2. REGISTER USER

In order to use this platform you need to register as a user using the option Login and then Register User.

1

http://caletagreen.com/
file:///home/tecservin/Downloads/10
file:///home/tecservin/Downloads/9

A user account has the following main fields:

 Email Address: required. Your Email Address will be your user identifier in m2mlight.com. All
messages from cameras, sensors, actuators and alerts will be sent to this address.

 Name: required. Your user name.

 Password: required. Your password of at least 7 characters

 Time Zone: required. Pick your Time Zone. It is important to stored your data with the
appropriate time.

 Domain: optional. The domain of your home or small business. For example: caletagreen.com.
This field is not required but it is necessary if you want to use the subdomains option.

 Town/City, Address and Phone: optional.

 Telegram Id: is the Telegram Phone Chat ID (Obtained with Chat ID Echo in your phone)

 Api_key: informative. This api_key is an unique identifier of the user.

 Privacy Policy: required. You have to indicate that you agree to the Privacy Policy of this
website. You can read this policy in the indicated link.

If you want to change your account information, including your password, you have to use the Account
option.

3. IP CAMERAS

An IP camera is a device connecting directly to an Ethernet network.

The IP CAMERAS option allows you to manage your Ip cameras. You can add, delete and edit a camera.
It permits you to stop and start the motion characteristic of a camera. Also, you can monitor and see
camera videos.

In the second part of this dialog, you can add or register a new camera. The maximum number of cameras
that you can register is 4.

2

A camera has the following required fields:

 Brand: you have to choose the brand of your camera. The brands listed are those supported by
m2mlight at this moment.

 Model: the model of your camera.
 Protocol: the stream protocol. It can be http or rtsp.
 Environment: it can be Outdoor or Indoor
 Name: the camera name. You can not have two cameras with the same name.
 Ip or domain: the IP address or the domain of the camera. It is the internal IP address or sub-

domain. The system checks that it is a valid value.
 Port: the camera port number
 User name: the camera user name
 Password: the camera password

In the first part of this dialog, you will find the list of your cameras. Using the Edit button you can update
the camera properties. With the Delete button you remove a camera and its motion registers; you need to
confirm this previously. The Stop button allow to stop motion property and the Start button allow to start
motion property.

Api_key is the unique identifier of the camera and you can not change this value.

The Status of a camera can be:

 Motion property is enable

 Motion property is disable

Camera is disconnected for any reason

Daemons process check periodically each camera and set this status.
Using the Monitor button you can see online the camera and its motions videos of the last month.

3

With the Live Cameras Panel button, you can see all cameras on line.

4. SENSORS

A sensor is a device that detects changes in the ambient conditions and transmits this information. For
example, there are sensors of temperature, light, humidity, motion, electric current, power consumption,
etc.

The SENSORS option allows you to manage your sensors. You can add, delete and edit a sensor. With
this option you define sensors that have periodically values: singles values or location values (longitude

4

and latitude). In this platform, coordinates values obtained from GPS devices are considered sensors.

For a sensor, you can upload data and see its status. For example, you can see if the sensors values are out
of the defined Set Point Value.

In the second part of this dialog, you can add or register a new sensor. The maximum number of sensors
you can register is 10.

A sensor has the following fields:

 Name: required. The sensor name. You can not have two sensors with the same name.

 Sensor type: you have two alternatives, Single value (default) or Location. If you choice Location
the measure field is always Degrees (longitude and latitude).

 Control type: you have two alternatives, Manual (default) or Automatic. If you choice Automatic
will exist a synchronization with a remote controller. MQTT messages will be sent to controller
and the system will wait for a positive response.

 Measure: required. A standard unit used to express the size, amount, or degree of something. For
example: Watts.

There are 4 special measures:

- binary: a binary sensor (0 or 1)

- kwh: kilowatts-hour (electric energy)

- litros/min (Ex. Water flow)

- Watts (power)

5

The sensors with these special measures have some particular reports.

 Email-messages: you can choice enable or disable. Enable, if you want to receive email messages
when the sensor is not registering values or value reach the Set Point. Disable, if you do not
receive email messages.

 Interval (sec): optional. The interval in seconds of two consecutive sensor values.

 Set Point Value: optional. The sensor value that controls an actuator.

 Action Under Set Point: optional. The actuator api_key that is triggered if sensors values are
under the set point value.

 Action Over Set Point: optional. The actuator api_key that is triggered if sensors values are over
the set point value.

 Sample Time (min): optional, default is 0. The time to obtain an average of a sample of values. It
is used when the sensor values are widely dispersed over time.

In the first part of this dialog, you will find the list of your sensors. Using the Edit button you can update
the sensor properties. With the Delete button you remove a sensor and its register values; you need to
confirm this previously. The Stop button set the disable status and the Start button set the enable status.
If you has defined Automatic option, all these actions will be executed if there is a positive response from
the controller.

The Status of a sensor can be:

 Sensor is enable and it is registering values

 Sensor is disable

 Sensor is not registering values

 Sensor values have reached the Set Point

Daemons process check periodically each sensor and set this status. If a sensor has not registered a value
in the cloud in the last 10 minutes, the system changes its state and sends a email message to user if
Email-messages property is enable.

For a sensor, the minimum interval between two inserted values is 10 seconds. Namely, if you try to
insert a value in a range of less than 10 seconds, the value will not inserted.

Also, for a sensor, the minimum interval between two emails sent is 3,600 seconds (one hour) . Namely, if
there are continuous news, you will receive a separate email for at least one hour.

Api_key is the unique identifier of the sensor and you can not change this value. You can add sensor
values using this api_key and the Server functions or M2MData library.

The Graphics button allow you to see line graphs of these data, graphs by 5 minutes, an hour, a day, a
week or a month. These graphics work with most popular browsers: Chrome and Firefox.

6

Using the Data button you can display and download stored data.

In the case of location sensors, with the Map button, you can see a Google Map with the location.

7

With the Live Sensor Panel button, you can see all sensors values on line in one screen. The screen is
refreshed every 5 seconds.

If you do not want to see a sensor in this screen you can change the status to disable with the Stop button.

5. ACTUATORS

8

An actuator is a component that is responsible for controlling a mechanism or system. For example,
turning on/off lights, turning on/off an sound alarm, opening or closing a door, etc.

The ACTUATORS option allows you to manage your actuators. You can add, delete and edit a actuator.

With this option you can do a remote control (manual or automatic) of an actuator.

Also, you can display and download registered actions of an actuator.

In the second part of this dialog, you can add or register a new actuator.

An actuator has the following fields:

 Name: required. The actuator name. You can not have two actuators with the same name.
 Email messages: you can choice enable or disable. Enable, if you want to receive email messages

when an action occurs. Disable, if you do not want to receive email messages.
 Control Type: you can choice Manuel or Automatic. If you want to have automatic remote

control you have to choice the Automatic option.
 Ip or domain: optional. Ip address or domain of controller device. For example, the ip address of

an arduino with ethernet shield.
 Port: optional. The port of controller device.
 Action: it can be ON or OFF. This action name will be sent in the message to controller device.
 Start HH:MM: optional. The start time (HH:MM) for the action. It is the time to be executed the

action daily.
 Week-day: enable or disable for each day. Enable means that the action must be executed this

day. This property allows you to choice the days of the week when action will be executed.

In the first part of this dialog, you will find the list of your actuators. Using the Edit button you can

9

update the actuator properties. With the Delete button you remove an actuator and its register values; you
need to confirm this previously. The Stop button set the disable status and the Start button set the enable
status.

The Status of an actuator can be:

 Actuator is enable
 Actuator is disable

For an actuator, the minimum interval between two emails sent due to an actuator action is 10 seconds.

Api_key is the unique identifier of the actuator and you can not change this value. You can manage
actuators using this api_key and the Server functions or M2MData library.

The Do Now button execute immediately an actuator action at defined start HH:MM. It sends a message
(http call) to controller device. This message is displayed on the screen and registered as an actuator
manual action.

For a sensor, the Data button allows to see the executed actuators actions.

6. ALERTS

An alert is a message sent by e-mail that gives you useful information. You can define an alert when
certain event occurs. For example: sensors of motion and occupancy, proximity sensors, contact sensors
(open door or window), etc.

The ALERTS option allows you to manage your alerts. You can add, delete and edit an alert. Also, you
can to display and download history stored data.

10

In the second part of this dialog, you can add or register a new alert.

An alert has the following fields:

 Name: required. The sensor name. You can not have two sensors with the same name.
 Message: required. The message to be sent.
 E-mail interval: interval between messages in seconds (default is 3,600 seconds that is equal to

an hour). The minimum is 60 seconds.

In the first part of this dialog, you will find the list of your alerts. Using the Edit button you can update
the alert properties. With the Delete button you remove an alert and its register values; you need to
confirm this previously. The Stop button allow to disable an alert and the Start button allow to enable it.
To send an e-mail the status must be enable.

The Status of an alert can be:

 Alert is enable
 Alert is disable

Api_key is the unique identifier of the alert and you can not change this value.

You can add alerts values using this api_key and the Server functions or M2MData library.

Using the Data button you can display and download stored data alerts sent.

11

file:///home/malbuja/user_guide.html#8

7. SUBDOMAINS

M2Mlight platform offers a DNS (Domain Name Server) service if you have a domain name. You can
use this option if you need an internal DNS at your home.

First, register your domain name in your m2mlight account. Next register here your subdomains and set
in your main router the DNS equal to pdns.caletagreen.com.

A subdomain is a domain that is a part of a main domain. For example, the subdomain
gardencontrol.caletegreen.com is part of the domain caletagreen.com. It is useful when you need to give a
name to an internal IP address and then using this name internal o externally together with a port.

This local DNS is not related to the others options of cameras, sensors, alerts, etc. That is, you can use
this Subdomains option regardless of the other options.

12

With the second part of this dialog, you can add or register a new sub-domain. First, you need to register a
domain using the Register User Dialog.

A sub-domain has the following fields:

 Name: the sub-domain name. You can not have two sub-domains with the same name.
 Ip address: the internal Ip address

In the first part of this dialog, you will find the list of your sub-domains. Using the Edit button you can
update the sub-domains properties. With the Delete button you remove a sub-domain.

8. REST SERVICES AND M2MDATA ARDUINO LIBRARY

REST services (server functions) , MQTT protocols and the M2M Arduino library allow to use M2Mlight
platform. First, you need to register the sensor, actuator or alert and then obtain the api_key in
m2mlight.com.

You can find examples of this use in https://github.com/m2mlight/m2mData and projects located on
www.caletagren.com.

These REST services and Arduino library can be used to send and receive values between the m2mlight
platform and a program in a microcontroller or computer (arduino, raspberry, esp8266, etc.) or in a
mobile device (tablet or smartphone).

The communication with the m2mlight platform can be using Ethernet (Arduino Ethernet or ENC28J60
shields), GSM (SIM800L module) or any device that connect to Internet.

13

http://www.caletagreen.com/
https://github.com/m2mlight/m2mData

You can download m2mData library and see more information in: https://github.com/m2mlight/m2mData

8.1. REST services

To upload/download data to m2mlight platform using http from a browser or program, you can employ
the following REST services:

a) Sensors:

-> Name: send_sensor_value

 Description: upload (save) a single sensor "value" of a sensor identified by "api_key"

 Call example: https://m2mlight.com/iot/send_sensor_value?api_key=250hhCIHeO&value=200

 Return: 0 if a value is successfully inserted, -1 for invalid api_key or disable status, -2 if the interval
between two values is less than 10 seconds.

-> Name: send_sensor_location

Description: upload (save) a location sensor "latitude" and "longitude of a sensor identified by "api_key"

Call example: https://m2mlight.com/iot/send_sensor_location?api_key=26hyCIHeO&latitude=-
0.158382&longitude=-78.45534

Return: 0 if values are successfully inserted, -1 for invalid api_key or disable status, -2 if the interval
between two values is less than 10 seconds.

-> Name: read_sensor_value

Description: return the last stored value of a single sensor identified by "api_key"

Call example: https://m2mlight.com/iot/read_sensor_value?api_key=300uhxXsAH

b) Actuators:

-> Name: send_email_action

Description: send an email related to an actuator action identified by api_key. The minimum interval
between two emails is 10 seconds.

Call example: http://m2mlight.com/iot/send_email_action?api_key=LrkD1njci8

Return: 0 if the mailing is successful

-> Name: read_actuator_hour

14

https://m2mlight.com/iot/send_sensor_value?api_key=250hhCIHeO&value=200
https://github.com/m2mlight/m2mData

Description: return the start hour (HH:MM) of an actuator identified by "api_key"

Call example: http://m2mlight.com/iot/read_actuator_hour?api_key=180SgN4pHk

-> Name: update_actuator_hour

Description: update the start hour "start_hour" of the actuator identified by "api_key"

Call example: http://m2mlight.com/iot/update_actuator_hour?api_key=a6ruhxX&start_hour=10:30

Return: -1 if HH:MM format is not correct

c) Alerts

-> Name: send_email_alert

Description: send an email related to an alert identified by api_key. The minimum interval between two
emails is the email_time_interval property

Call example: http://m2mlight.com/iot/send_email_alert?api_key=6trkDnjci8

Return: 0 if the mailing is successful

You can use these functions inside an C++ code (Arduino or Esp8266) or Python code (Raspberry). If
you are using an Arduino is better to use the M2MData library.

If you are using a GSM/GPRS chip like SIM800L then you can connect to m2mlight.com directly with
http commands or mqtt protocol. See example_use_sim800.ino.

8.2. M2MData Arduino library

The m2mData library is an Arduino library that allows you to store and retrieve data of sensors, actuators
and alerts to/from m2mlight. You can use the http or mqtt protocol.

You can download this library from this link: https://github.com/m2mlight/m2mData

You need to create a m2mData folder in your Arduino Libraries and download the files: m2mData.h and
m2mData.cpp

When Arduino is connected to Internet, you have the following functions:

a) Sensors

// Store a single "value" of a sensor identified with "api_key" using the http protocol
 void sendValue(char api_key[], float value);

 // Store coordinates values of a location sensor identified with "api_key"

 void sendCoordinates(char api_key[], float latitude, float longitude);

15

https://github.com/m2mlight/m2mData

 // Return the last single value of a sensor identified with "api_key"
 float readValue(char api_key[]);

b) Actuators

 // Send an email about an action of an actuator identified with "api_key"
 void sendEmailAction(char api_key[]);

 // Return the star hour (HH:MM) of an actuator identified with "api_key"
 String readActuatorHour(char api_key[]);

// Update the start hour "start_hour" (HH:MM) of an actuator identified with "api_key"
void updateActuatorHour(char api_key[], char start_hour[]);

c) Alerts

 // Send an email of an alert identified with "api_key"
 void sendEmailAlert(char api_key[]);

9. MQTT Protocol

If you are connected to Internet, you can use mqtt messages to communicate to m2mlight.com

m2mlight.com is a mqtt broker, as such it receives and sends mqtt messages. If you choice Automatic in
the control type option in yours sensor and actuators m2mlight send mqtt messages in order to a controller
define its behavior with sensors, actuators and alerts.

A controller is a device that has a microcontroller (ATMEGA328, ESP8266, STM..,etc) and some sensors
and actuators connected at its pines.

9.1 MQTT Messages from m2mlight.com to controller

a) To update information for a sensor:

- Topic: /user_api_key → Ex.: /3EI81njci3

- Payload: sensXXXX&o=I&a=YYY&s=Y&t=Y&e=YYY&u=YYY&v=YYY

 Where:

- XXXX is a aleatory number created by m2mlight.com (message id)

- Operation: o= I(insert) o U(Update) o D(Delete)

- Sensor api_key: a (Ex. a= jKcY1njcn2)

- Status: s (0=disable, other value=enable)

- Sample time: t (Ex, t=120)

- Set point: e (Ex. e=5)

16

- Action Under Set Point: u (Ex. u=6q7H1njcjw)

- Action Over Set Point: v (Ex. v=QY0e1njcjx)

b) To update information for an actuator:

- Topic: /user_api_key → Ex.: /3EI81njci3

- Payload: actuXXXX&o=Y&a=YYY&s=Y&c=Y&m=Y

 Where:

- XXXX is a aleatory number created by m2mlight.com (message id)

- Operation: o= I(insert) o U(Update) o D(Delete)

- Actuator api_key: a (Ex. a= mu5B1njcjz)

- Status: s (0=disable, other value=enable)

- Action: a (0=OFF, 1=ON)

- Control Type: m (0=Automatic, 1=Manual)

c) To execute an action immediately for an actuator:

- Topic: /user_api_key → Ex.: /3EI81njci3

- Payload: dnow&akey=yuWQ1njcig&actnow=ON

 Where:

- Actuator api_key: akey (Ex. akey= mu5B1njcjz)

- Action: actnow (Ex. actnow=ON)

9.2 MQTT Messages from controller to m2mlight.com

a) To load a “value” of a single sensor with sensor_api_key of a user identified by user_api_key:

- Topic: /user_api_key/sensor → Ex.: /3EI81njci3/sensor

- Payload: sensor_api_key&value → Ex.: jKcY1njcn2&12.34

 b) To load “values” of a location sensor with sensor_api_key of a user identified by user_api_key:

- Topic: /user_api_key/sensorloc → Ex.: /3EI81njci3/sensorloc

- Payload: sensor_api_key&latitude&longitude&speed

 → Ex.: jKcY1njcn2&-0.172957&-78.480301&40.5

17

The field “speed” is optional and the unit is km/h

 // For location sensor values, Topic: user_api_key/sensorloc/

 // In $value (payload): sensor_api_key&latitude&longitude&speed

c) To send an “alert” of alert_api_key of a user identified by user_api_key:

- Topic: /user_api_key/alert → Ex.: /3EI81njci3/alert

- Payload: alert_api_key → Ex.: jqma1njcj9

d) To send a reply for an update of information about sensor or actuator:

- Topic: /user_api_key/reply → Ex.: /3EI81njci3/reply

- Payload: sensXXXX&OK or sensXXXX&KO or actuXXXX&OK or actuXXXX&KO

 Where XXXX is a aleatory number created by m2mlight.com (message id)

9.3. MQTT protocol in M2Mlibrary

In M2Mlibrary you have this function:

// Store a single "value" of a sensor identified with "api_key" using the mqtt protocol
 void sendValueMqtt(char api_key[], float value);

10. RELATED LINKS AND CREDITS

Some related links:

 https://github.com/m2mlight/m2mData
 http://caletagreen.com
 https://github.com/caletagreen/Automation

Some open source software, used in this platform, that deserve special credit:

 Motion: https://motion-project.github.io/
 Kurento: https://www.kurento.org/
 MQTT protocol: http://mqtt.org/
 PowerDNS: https://www.powerdns.com/

18

https://www.powerdns.com/
https://www.kurento.org/
https://www.kurento.org/
https://motion-project.github.io/

